Triples in Matroid Circuits

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Erdös-Pósa property for matroid circuits

The number of disjoint cocircuits in a matroid is bounded by its rank. There are, however, matroids with arbitrarily large rank that do not contain two disjoint cocircuits; consider, for example, M(Kn) and Un,2n. Also the bicircular matroids B(Kn) have arbitrarily large rank and have no 3 disjoint cocircuits. We prove that for each k and n there exists a constant c such that, if M is a matroid ...

متن کامل

Determining a Binary Matroid from its Small Circuits

It is well known that a rank-r matroid M is uniquely determined by its circuits of size at most r. This paper proves that if M is binary and r > 3, then M is uniquely determined by its circuits of size at most r − 1 unless M is a binary spike or a special restriction thereof. In the exceptional cases, M is determined up to

متن کامل

Matroid packing and covering with circuits through an element

In 1981, Seymour proved a conjecture of Welsh that, in a connected matroid M , the sum of the maximum number of disjoint circuits and the minimum number of circuits needed to cover M is at most r∗(M) + 1. This paper considers the set Ce(M) of circuits through a fixed element e such that M/e is connected. Let νe(M) be the maximum size of a subset of Ce(M) in which any two distinct members meet o...

متن کامل

Relaxations of the matroid axioms I: Independence, Exchange and Circuits

Motivated by a question of Duval and Reiner about higher Laplacians of simplicial complexes, we describe various relaxations of the defining axioms of matroid theory to obtain larger classes of simplicial complexes that contain pure shifted simplicial complexes. The resulting classes retain some of the matroid properties and allow us to classify matroid properties according to the relevant axio...

متن کامل

A Constructive Characterisation of Circuits in the Simple (2,2)-sparsity Matroid

We provide a constructive characterisation of circuits in the simple (2, 2)sparsity matroid. A circuit is a simple graph G = (V,E) with |E| = 2|V | − 1 and the number of edges induced by any X ( V is at most 2|X| − 2. Insisting on simplicity results in the Henneberg operation being enough only when the graph is sufficiently connected. Thus we introduce 3 different sum operations to complete the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Journal of Combinatorics

سال: 1986

ISSN: 0195-6698

DOI: 10.1016/s0195-6698(86)80044-0